IQI 04, Seminar 13

Produced with pdflatex and xfig

Quantum physics simulation.

E. "Manny" Knill: knill@boulder.nist.gov

Superficial problem statement.

Given: A model of a quantum physics system.

Superficial problem statement.

Given: A model of a quantum physics system.

Superficial problem statement.

Given: A model of a quantum physics system.

- A model of quantum physics may be characterized by
 - 1. a Hamiltonian H generating unitary evolution in
 - 2. a state space \mathcal{H} of wavefunctions.

Superficial problem statement.

Given: A model of a quantum physics system.

Problem: Determine a physical quantity.

- A model of quantum physics may be characterized by
 - 1. a Hamiltonian H generating unitary evolution in
 - 2. a state space \mathcal{H} of wavefunctions.
- Example models.
 - A particle of mass m in one dimension.

 \mathcal{H} : Square integrable functions on $\mathbb{R} = (-\infty, \infty)$.

$$H = -\frac{1}{m} \frac{\partial^2}{\partial x^2} + V$$
.

 $[\dots \hbar = 1]$

Unitary evolution according to Schrödinger's equation:

$$\frac{\partial}{\partial t}\psi = -iH\psi$$
.

Superficial problem statement.

Given: A model of a quantum physics system.

Problem: Determine a physical quantity.

- A model of quantum physics may be characterized by
 - 1. a Hamiltonian H generating unitary evolution in
 - 2. a state space \mathcal{H} of wavefunctions.
- Example models.
 - A particle of mass m in one dimension.

 \mathcal{H} : Square integrable functions on $\mathbb{R} = (-\infty, \infty)$.

$$H = -\frac{1}{m} \frac{\partial^2}{\partial x^2} + V.$$

Unitary evolution according to Schrödinger's equation:

$$[\dots \hbar = 1]$$

$$\frac{\partial}{\partial t}\psi = -iH\psi.$$

Superficial problem statement.

Given: A model of a quantum physics system.

Problem: Determine a physical quantity.

- A model of quantum physics may be characterized by
 - 1. a Hamiltonian H generating unitary evolution in
 - 2. a state space \mathcal{H} of wavefunctions.
- Example models.
 - A particle of mass m in one dimension.

 \mathcal{H} : Square integrable functions on $\mathbb{R} = (-\infty, \infty)$.

$$H = -\frac{1}{m} \frac{\partial^2}{\partial x^2} + V.$$

 $[\dots \hbar = 1]$

Unitary evolution according to Schrödinger's equation:

$$\frac{\partial}{\partial t}\psi = -iH\psi$$
.

- N particles in 3 dimensions.

 \mathcal{H} : Square integrable functions on \mathbb{R}^{3N} .

$$H = \sum_{j=1}^{N} E_j(\text{kinetic}) + V_j(\text{potential}) + \sum_{1 \leq j < k \leq N} I_{j,k}(\text{interaction})$$

Superficial problem statement.

Given: A model of a quantum physics system.

Problem: Determine a physical quantity.

- A model of quantum physics may be characterized by
 - 1. a Hamiltonian H generating unitary evolution in
 - 2. a state space \mathcal{H} of wavefunctions.
- Example models.
 - A particle of mass m in one dimension.

 \mathcal{H} : Square integrable functions on $\mathbb{R} = (-\infty, \infty)$.

$$H = -\frac{1}{m} \frac{\partial^2}{\partial x^2} + V.$$

 $[\dots \hbar = 1]$

Unitary evolution according to Schrödinger's equation:

$$\frac{\partial}{\partial t}\psi = -iH\psi$$
.

N particles in 3 dimensions.

 \mathcal{H} : Square integrable functions on \mathbb{R}^{3N} .

$$H = \sum_{j=1}^{N} E_j(\text{kinetic}) + V_j(\text{potential}) + \sum_{1 \leq j < k \leq N} I_{j,k}(\text{interaction})$$

Superficial problem statement.

A model of a quantum physics system. Given:

Problem: Determine a physical quantity.

- A model of quantum physics may be characterized by
 - 1. a Hamiltonian H generating unitary evolution in
 - 2. a state space \mathcal{H} of wavefunctions.
- Example models.
 - A particle of mass m in one dimension.

 \mathcal{H} : Square integrable functions on $\mathbb{R} = (-\infty, \infty)$.

$$H = -\frac{1}{m} \frac{\partial^2}{\partial x^2} + V.$$

 $[\dots \hbar = 1]$

Unitary evolution according to Schrödinger's equation: $\frac{\partial}{\partial t}\psi = -iH\psi$.

$$\frac{\partial}{\partial t}\psi = -iH\psi$$

N particles in 3 dimensions.

 \mathcal{H} : Square integrable functions on \mathbb{R}^{3N} .

$$H = \sum_{j=1}^{N} E_j(\text{kinetic}) + V_j(\text{potential}) + \sum_{1 \leq j < k \leq N} I_{j,k}(\text{interaction})$$

- Translation invariant 1-D lattice of spin-
$$\frac{1}{2}$$
 systems. $H=\sum_k H_I^{({\bf k},{\bf k}+1)}$, with $H_I^{({\bf k},{\bf k}+1)}=\sum_{u,v} \alpha_{u,v} \sigma_u^{({\bf k})} \sigma_v^{({\bf k}+1)}$

Superficial problem statement.

Given: A model of a quantum physics system.

- A model of quantum physics may be characterized by
 - 1. a Hamiltonian H generating unitary evolution in
 - 2. a state space \mathcal{H} of wavefunctions.

Superficial problem statement.

Given: A model of a quantum physics system.

Problem: Determine a physical quantity.

- A model of quantum physics may be characterized by
 - 1. a Hamiltonian H generating unitary evolution in
 - 2. a state space \mathcal{H} of wavefunctions.
- Some physical quantities. [Complexity for "physical" H, A, B, \ldots]

of inty

Superficial problem statement.

Given: A model of a quantum physics system.

- A model of quantum physics may be characterized by
 - 1. a Hamiltonian H generating unitary evolution in
 - 2. a state space \mathcal{H} of wavefunctions.
- Some physical quantities. [Complexity for "physical" H, A, B, \ldots]
 - The lowest energy of H.

Superficial problem statement.

Given: A model of a quantum physics system.

Problem: Determine a physical quantity.

- A model of quantum physics may be characterized by
 - 1. a Hamiltonian H generating unitary evolution in
 - 2. a state space \mathcal{H} of wavefunctions.
- Some physical quantities. [Complexity for "physical" H, A, B, \ldots]
 - The lowest energy of H.

Superficial problem statement.

Given: A model of a quantum physics system.

Problem: Determine a physical quantity.

- A model of quantum physics may be characterized by
 - 1. a Hamiltonian H generating unitary evolution in
 - 2. a state space \mathcal{H} of wavefunctions.
- Some physical quantities. [Complexity for "physical" H, A, B, \ldots]
 - The lowest energy of H.
 - The spectrum of H.

10 10 10 49 E

Superficial problem statement.

Given: A model of a quantum physics system.

Problem: Determine a physical quantity.

- A model of quantum physics may be characterized by
 - 1. a Hamiltonian H generating unitary evolution in
 - 2. a state space \mathcal{H} of wavefunctions.
- Some physical quantities. [Complexity for "physical" H, A, B, \ldots]
 - The lowest energy of H. [In general: Hard]
 - The spectrum of H. [Complete: Hard. With resolution ϵ : Q. easy.]

at Into you

Superficial problem statement.

Given: A model of a quantum physics system.

Problem: Determine a physical quantity.

- A model of quantum physics may be characterized by
 - 1. a Hamiltonian H generating unitary evolution in
 - 2. a state space \mathcal{H} of wavefunctions.
- Some physical quantities. [Complexity for "physical" H, A, B, \ldots]
 - The lowest energy of H.

- The spectrum of H. [Complete: Hard. With resolution ϵ : Q. easy.]
- The partition function $Z(\beta) = \operatorname{tr}(e^{-\beta H})$.

Superficial problem statement.

Given: A model of a quantum physics system.

Problem: Determine a physical quantity.

- A model of quantum physics may be characterized by
 - 1. a Hamiltonian H generating unitary evolution in
 - 2. a state space \mathcal{H} of wavefunctions.
- Some physical quantities. [Complexity for "physical" H, A, B, ...:]
 - The lowest energy of H.

- The spectrum of H. [Complete: Hard. With resolution ϵ : Q. easy.]
- The partition function $Z(\beta) = \operatorname{tr}(e^{-\beta H})$. [Quadratic q. speedup]

Superficial problem statement.

Given: A model of a quantum physics system.

Problem: Determine a physical quantity.

- A model of quantum physics may be characterized by
 - 1. a Hamiltonian H generating unitary evolution in
 - 2. a state space \mathcal{H} of wavefunctions.
- Some physical quantities. [Complexity for "physical" H, A, B, \ldots]
 - The lowest energy of H.

- The spectrum of H. [Complete: Hard. With resolution ϵ : Q. easy.]
- The partition function $Z(\beta) = \operatorname{tr}(e^{-\beta H})$. [Quadratic q. speedup]
- Thermodyn. expectations $\operatorname{tr}(e^{-\beta H}A)/Z(\beta)$.

Superficial problem statement.

Given: A model of a quantum physics system.

Problem: Determine a physical quantity.

- A model of quantum physics may be characterized by
 - 1. a Hamiltonian H generating unitary evolution in
 - 2. a state space \mathcal{H} of wavefunctions.
- Some physical quantities. [Complexity for "physical" H, A, B, \ldots]
 - The lowest energy of H.

[In general: Hard]

- The spectrum of H. [Complete: Hard. With resolution ϵ : Q. easy.]
- The partition function $Z(\beta) = \operatorname{tr}(e^{-\beta H})$. [Quadratic q. speedup]
- Thermodyn. expectations $\operatorname{tr}(e^{-\beta H}A)/Z(\beta)$. [Quad. q. speedup]

A smily plan

Superficial problem statement.

Given: A model of a quantum physics system.

Problem: Determine a physical quantity.

- A model of quantum physics may be characterized by
 - 1. a Hamiltonian H generating unitary evolution in
 - 2. a state space \mathcal{H} of wavefunctions.
- Some physical quantities. [Complexity for "physical" H, A, B, ...:]
 - The lowest energy of H.

- The spectrum of H. [Complete: Hard. With resolution ϵ : Q. easy.]
- The partition function $Z(\beta) = \operatorname{tr}(e^{-\beta H})$. [Quadratic q. speedup]
- Thermodyn. expectations ${
 m tr}(e^{-\beta H}A)/Z(\beta)$. [Quad. q. speedup]
- Expectations $\langle \psi | A | \psi \rangle$ for known states $| \psi \rangle$.

Superficial problem statement.

Given: A model of a quantum physics system.

Problem: Determine a physical quantity.

- A model of quantum physics may be characterized by
 - 1. a Hamiltonian H generating unitary evolution in
 - 2. a state space \mathcal{H} of wavefunctions.
- Some physical quantities. [Complexity for "physical" H, A, B, \ldots]
 - The lowest energy of H.

[In general: Hard]

- The spectrum of H. [Complete: Hard. With resolution ϵ : Q. easy.]
- The partition function $Z(\beta) = \operatorname{tr}(e^{-\beta H})$. [Quadratic q. speedup]
- Thermodyn. expectations ${
 m tr}(e^{-\beta H}A)/Z(\beta)$. [Quad. q. speedup]
- Expectations $\langle \psi | A | \psi \rangle$ for known states $| \psi \rangle$. [Q. easy to within ϵ]

A smy Vyp

Superficial problem statement.

Given: A model of a quantum physics system.

Problem: Determine a physical quantity.

- A model of quantum physics may be characterized by
 - 1. a Hamiltonian H generating unitary evolution in
 - 2. a state space \mathcal{H} of wavefunctions.
- Some physical quantities. [Complexity for "physical" H, A, B, \ldots]
 - The lowest energy of H.

- The spectrum of H. [Complete: Hard. With resolution ϵ : Q. easy.]
- The partition function $Z(\beta) = \operatorname{tr}(e^{-\beta H})$. [Quadratic q. speedup]
- Thermodyn. expectations ${
 m tr}(e^{-\beta H}A)/Z(\beta)$. [Quad. q. speedup]
- Expectations $\langle \psi | A | \psi \rangle$ for known states $| \psi \rangle$. [Q. easy to within ϵ]
- Correlation functions $\langle \psi | e^{iHt} A e^{-iHt} B | \psi \rangle$.

Superficial problem statement.

Given: A model of a quantum physics system.

Problem: Determine a physical quantity.

- A model of quantum physics may be characterized by
 - 1. a Hamiltonian H generating unitary evolution in
 - 2. a state space \mathcal{H} of wavefunctions.
- Some physical quantities. [Complexity for "physical" H, A, B, \ldots]
 - The lowest energy of H.

- The spectrum of H. [Complete: Hard. With resolution ϵ : Q. easy.]
- The partition function $Z(\beta) = \operatorname{tr}(e^{-\beta H})$. [Quadratic q. speedup]
- Thermodyn. expectations ${
 m tr}(e^{-\beta H}A)/Z(\beta)$. [Quad. q. speedup]
- Expectations $\langle \psi | A | \psi \rangle$ for known states $| \psi \rangle$. [Q. easy to within ϵ]
- Correlation functions $\langle \psi | e^{iHt} A e^{-iHt} B | \psi \rangle$. [Q. easy to within ϵ]

Superficial problem statement.

Given: A model of a quantum physics system.

Problem: Determine a physical quantity.

- A model of quantum physics may be characterized by
 - 1. a Hamiltonian H generating unitary evolution in
 - 2. a state space \mathcal{H} of wavefunctions.
- Some physical quantities. [Complexity for "physical" H, A, B, \ldots]
 - The lowest energy of H.

- The spectrum of H. [Complete: Hard. With resolution ϵ : Q. easy.]
- The partition function $Z(\beta) = \operatorname{tr}(e^{-\beta H})$. [Quadratic q. speedup]
- Thermodyn. expectations ${
 m tr}(e^{-\beta H}A)/Z(\beta)$. [Quad. q. speedup]
- Expectations $\langle \psi | A | \psi \rangle$ for known states $| \psi \rangle$. [Q. easy to within ϵ]
- Correlation functions $\langle \psi | e^{iHt} A e^{-iHt} B | \psi \rangle$. [Q. easy to within ϵ]
- Response to probes under experimental conditions.

Superficial problem statement.

Given: A model of a quantum physics system.

Problem: Determine a physical quantity.

- A model of quantum physics may be characterized by
 - 1. a Hamiltonian H generating unitary evolution in
 - 2. a state space \mathcal{H} of wavefunctions.
- Some physical quantities. [Complexity for "physical" H, A, B, \ldots]
 - The lowest energy of H.

[In general: Hard]

- The spectrum of H. [Complete: Hard. With resolution ϵ : Q. easy.]
- The partition function $Z(\beta) = \operatorname{tr}(e^{-\beta H})$. [Quadratic q. speedup]
- Thermodyn. expectations ${
 m tr}(e^{-\beta H}A)/Z(\beta)$. [Quad. q. speedup]
- Expectations $\langle \psi | A | \psi \rangle$ for known states $| \psi \rangle$. [Q. easy to within ϵ]
- Correlation functions $\langle \psi | e^{iHt} A e^{-iHt} B | \psi \rangle$. [Q. easy to within ϵ]
- Response to probes under experimental conditions.

["virtual" experiment is q. easy]

Discretization and finitization of the model.

- Discretization and finitization of the model.
 - Particle of mass m in one dimension.

.....

Wavefunction: $\psi(x)$, $x \in \mathbb{R}$.

- Discretization and finitization of the model.
 - Particle of mass m in one dimension.

- Discretization and finitization of the model.
 - Particle of mass m in one dimension.

Hamiltonian:
$$-\frac{1}{m}\frac{\partial^2}{\partial x^2} + V(x)$$

$$\sum_{x} \frac{1}{m}Fx^2|x\rangle\langle x|F^{\dagger} + V(x)|x\rangle\langle x|$$
 ... F is the Fourier transform.

- Discretization and finitization of the model.
 - Particle of mass m in one dimension.

Faithful realization in a finite number of qubits.

- Discretization and finitization of the model.
 - Particle of mass m in one dimension.

- Faithful realization in a finite number of qubits.
 - $|-B+r/N\rangle \rightarrow |r\rangle$, r in binary.

- Discretization and finitization of the model.
 - Particle of mass m in one dimension.

- Faithful realization in a finite number of qubits.
 - $|-B+r/N\rangle \rightarrow |r\rangle$, r in binary.
- Implementation of evolution.

- Discretization and finitization of the model.
 - Particle of mass m in one dimension.

- Faithful realization in a finite number of qubits.
 - $|-B+r/N\rangle \rightarrow |r\rangle$, r in binary.
- Implementation of evolution.

-
$$\mathbf{K} = F \sum_{x} \frac{1}{m} x^2 |x\rangle \langle x| F^{\dagger}$$
, $\mathbf{V} = \sum_{x} V(x) |x\rangle \langle x|$.
Trotterization: $e^{-iHt} = (e^{-i\mathbf{K}t/T} e^{-i\mathbf{V}t/T})^T + O(1/T)$

- Discretization and finitization of the model.
 - Particle of mass m in one dimension.

- Faithful realization in a finite number of qubits.
 - $|-B+r/N\rangle \rightarrow |r\rangle$, r in binary.
- Implementation of evolution.

-
$$\mathbf{K}=F\sum_x \frac{1}{m}x^2|x\rangle\langle x|F^\dagger$$
, $\mathbf{V}=\sum_x V(x)|x\rangle\langle x|$.
Trotterization: $e^{-iHt}=(e^{-i\mathbf{K}t/T}e^{-i\mathbf{V}t/T})^T+O(1/T)$

Information extraction: State preparation and measurement.

Faithful Evolution

• Example: Triangle *XY*-model.

Faithful Evolution

- Example: Triangle *XY*-model.
 - Three spin- $\frac{1}{2}$ systems A, B, C.

- Example: Triangle *XY*-model.
 - Three spin- $\frac{1}{2}$ systems A, B, C.
 - Hamiltonian:

$$H = \sigma_z^{\,(\mathrm{A})} + \sigma_z^{\,(\mathrm{B})} + \sigma_z^{\,(\mathrm{C})} + \sigma_x^{\,(\mathrm{A})} \sigma_x^{\,(\mathrm{B})} + \sigma_x^{\,(\mathrm{A})} \sigma_x^{\,(\mathrm{C})} + \sigma_x^{\,(\mathrm{B})} \sigma_x^{\,(\mathrm{C})}$$

- Example: Triangle *XY*-model.
 - Three spin- $\frac{1}{2}$ systems A, B, C.
 - Hamiltonian:

$$H = \sigma_z^{\,({\rm A})} + \sigma_z^{\,({\rm B})} + \sigma_z^{\,({\rm C})} + \sigma_x^{\,({\rm A})} \sigma_x^{\,({\rm B})} + \sigma_x^{\,({\rm A})} \sigma_x^{\,({\rm C})} + \sigma_x^{\,({\rm B})} \sigma_x^{\,({\rm C})}$$

Each term in H is readily simulatable.

$$e^{-i\sigma_z^{(\mathsf{U})}t}$$
 :

A z-rotation.

- Example: Triangle XY-model.
 - Three spin- $\frac{1}{2}$ systems A, B, C.
 - Hamiltonian:

$$H = \sigma_z^{\,({\rm A})} + \sigma_z^{\,({\rm B})} + \sigma_z^{\,({\rm C})} + \sigma_x^{\,({\rm A})} \sigma_x^{\,({\rm B})} + \sigma_x^{\,({\rm A})} \sigma_x^{\,({\rm C})} + \sigma_x^{\,({\rm B})} \sigma_x^{\,({\rm C})}$$

Each term in H is readily simulatable.

$$e^{-i\sigma_z^{(\mathsf{U})}t}$$
 :

$$e^{-i\sigma_x^{\,(\mathsf{U})}\sigma_x^{\,(\mathsf{V})}t}$$
 :

 $e^{-i\sigma_z^{(U)}t}$: A z-rotation. $e^{-i\sigma_x^{(U)}\sigma_x^{(V)}t}$: Conjugate of an x-rotation by cnots.

- Example: Triangle XY-model.
 - Three spin- $\frac{1}{2}$ systems A, B, C.
 - Hamiltonian:

$$H = \sigma_z^{\,({\rm A})} + \sigma_z^{\,({\rm B})} + \sigma_z^{\,({\rm C})} + \sigma_x^{\,({\rm A})} \sigma_x^{\,({\rm B})} + \sigma_x^{\,({\rm A})} \sigma_x^{\,({\rm C})} + \sigma_x^{\,({\rm B})} \sigma_x^{\,({\rm C})}$$

Each term in H is readily simulatable.

$$e^{-i\sigma_z^{(U)}t}$$
: A z-rotation.

$$e^{-i\sigma_x^{(\mathsf{U})}\sigma_x^{(\mathsf{V})}t}$$
 :

 $e^{-i\sigma_x^{(U)}\sigma_x^{(V)}t}$: Conjugate of an x-rotation by cnots.

$$H_{int} = \sigma_z^{\,({\rm A})} + \sigma_z^{\,({\rm B})} + \sigma_z^{\,({\rm C})} \text{, } H_{cpl} = \sigma_x^{\,({\rm A})} \sigma_x^{\,({\rm B})} + \sigma_x^{\,({\rm A})} \sigma_x^{\,({\rm C})} + \sigma_x^{\,({\rm B})} \sigma_x^{\,({\rm C})} \text{.}$$

- Example: Triangle XY-model.
 - Three spin- $\frac{1}{2}$ systems A, B, C.
 - Hamiltonian:

$$H = \sigma_z^{\,({\rm A})} + \sigma_z^{\,({\rm B})} + \sigma_z^{\,({\rm C})} + \sigma_x^{\,({\rm A})} \sigma_x^{\,({\rm B})} + \sigma_x^{\,({\rm A})} \sigma_x^{\,({\rm C})} + \sigma_x^{\,({\rm B})} \sigma_x^{\,({\rm C})}$$

Each term in H is readily simulatable.

$$e^{-i\sigma_z^{(U)}t}$$
: A z-rotation.

$$e^{-i\sigma_x^{(\mathsf{U})}\sigma_x^{(\mathsf{V})}t}$$
 :

 $e^{-i\sigma_x^{(U)}\sigma_x^{(V)}t}$: Conjugate of an x-rotation by cnots.

$$\begin{split} H_{int} &= \sigma_z^{\, (\text{A})} + \sigma_z^{\, (\text{B})} + \sigma_z^{\, (\text{C})} \text{, } H_{cpl} = \sigma_x^{\, (\text{A})} \sigma_x^{\, (\text{B})} + \sigma_x^{\, (\text{A})} \sigma_x^{\, (\text{C})} + \sigma_x^{\, (\text{B})} \sigma_x^{\, (\text{C})} \text{.} \\ e^{-iH_{int}t} &= e^{-i\sigma_z^{\, (\text{A})}} t e^{-i\sigma_z^{\, (\text{B})}} t e^{-i\sigma_z^{\, (\text{C})}} t \text{, similarly for } e^{-iH_{cpl}t} \text{.} \end{split}$$

- Example: Triangle XY-model.
 - Three spin- $\frac{1}{2}$ systems A, B, C.
 - Hamiltonian:

$$H = \sigma_z^{\text{ (A)}} + \sigma_z^{\text{ (B)}} + \sigma_z^{\text{ (C)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (B)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (C)}} + \sigma_x^{\text{ (B)}} \sigma_x^{\text{ (C)}}$$
 Each term in H is readily simulatable.

$$e^{-i\sigma_z}$$
: A z-rotation.

$$e^{-i\sigma_x^{(\mathsf{U})}\sigma_x^{(\mathsf{V})}t}$$
:

 $e^{-i\sigma_x^{(\mathsf{U})}\sigma_x^{(\mathsf{V})}t}$: Conjugate of an x-rotation by cnots.

$$\begin{split} H_{int} &= \sigma_z^{\text{ (A)}} + \sigma_z^{\text{ (B)}} + \sigma_z^{\text{ (C)}} \text{, } H_{cpl} = \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (B)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (C)}} + \sigma_x^{\text{ (B)}} \sigma_x^{\text{ (C)}} \text{.} \\ e^{-iH_{int}t} &= e^{-i\sigma_z^{\text{ (A)}}t} e^{-i\sigma_z^{\text{ (B)}}t} e^{-i\sigma_z^{\text{ (C)}}t} \text{, similarly for } e^{-iH_{cpl}t} \text{.} \end{split}$$

- Example: Triangle *XY*-model.
 - Three spin- $\frac{1}{2}$ systems A, B, C.
 - Hamiltonian:

$$H = \sigma_z^{\text{ (A)}} + \sigma_z^{\text{ (B)}} + \sigma_z^{\text{ (C)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (B)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (C)}} + \sigma_x^{\text{ (B)}} \sigma_x^{\text{ (C)}}$$
 Each term in H is readily simulatable.

$$e^{-i\sigma_z^{(\mathsf{U})}t}$$
: A z-rotation.

$$e^{-i\sigma_x^{(\mathsf{U})}\sigma_x^{(\mathsf{V})}t}$$
 : Conjugate of an x -rotation by cnots.

$$\begin{split} H_{int} &= \sigma_z^{\text{ (A)}} + \sigma_z^{\text{ (B)}} + \sigma_z^{\text{ (C)}} \text{, } H_{cpl} = \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (B)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (C)}} + \sigma_x^{\text{ (B)}} \sigma_x^{\text{ (C)}} \text{.} \\ e^{-iH_{int}t} &= e^{-i\sigma_z^{\text{ (A)}}t} e^{-i\sigma_z^{\text{ (B)}}t} e^{-i\sigma_z^{\text{ (C)}}t} \text{, similarly for } e^{-iH_{cpl}t} \text{.} \end{split}$$

Trotterize:
$$e^{-iHt} = e^{-i(H_{int}+H_{cpl})t}$$

- Example: Triangle XY-model.
 - Three spin- $\frac{1}{2}$ systems A, B, C.
 - Hamiltonian:

$$H = \sigma_z^{\text{ (A)}} + \sigma_z^{\text{ (B)}} + \sigma_z^{\text{ (C)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (B)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (C)}} + \sigma_x^{\text{ (B)}} \sigma_x^{\text{ (C)}}$$
 Each term in H is readily simulatable.

$$e^{-i\sigma_z}$$
: A z-rotation.

$$e^{-i\sigma_x^{(\mathsf{U})}\sigma_x^{(\mathsf{V})}t}$$
 : Conjugate of an x -rotation by cnots.

$$\begin{split} H_{int} &= \sigma_z^{\text{ (A)}} + \sigma_z^{\text{ (B)}} + \sigma_z^{\text{ (C)}} \text{, } H_{cpl} = \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (B)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (C)}} + \sigma_x^{\text{ (B)}} \sigma_x^{\text{ (C)}} \text{.} \\ e^{-iH_{int}t} &= e^{-i\sigma_z^{\text{ (A)}}t} e^{-i\sigma_z^{\text{ (B)}}t} e^{-i\sigma_z^{\text{ (C)}}t} \text{, similarly for } e^{-iH_{cpl}t} \text{.} \end{split}$$

Trotterize:
$$e^{-iHt} = e^{-i(H_{int} + H_{cpl})t}$$

= $\left(e^{-i(H_{int} + H_{cpl})\frac{t}{N}}\right)^N$

- Example: Triangle XY-model.
 - Three spin- $\frac{1}{2}$ systems A, B, C.
 - Hamiltonian:

 $H = \sigma_z^{(A)} + \sigma_z^{(B)} + \sigma_z^{(C)} + \sigma_x^{(A)} \sigma_x^{(B)} + \sigma_x^{(A)} \sigma_x^{(C)} + \sigma_x^{(B)} \sigma_x^{(C)}$ Each term in H is readily simulatable.

$$e^{-i\sigma_z}^{(\mathsf{U})}t$$
: A z-rotation.

$$e^{-i\sigma_x^{(\mathsf{U})}\sigma_x^{(\mathsf{V})}t}$$
:

 $e^{-i\sigma_x^{(\mathsf{U})}\sigma_x^{(\mathsf{V})}t}$: Conjugate of an x-rotation by cnots.

But the terms do not all commute. Combine commuting terms:

$$\begin{split} H_{int} &= \sigma_z^{\text{ (A)}} + \sigma_z^{\text{ (B)}} + \sigma_z^{\text{ (C)}} \text{, } H_{cpl} = \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (B)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (C)}} + \sigma_x^{\text{ (B)}} \sigma_x^{\text{ (C)}} \text{.} \\ e^{-iH_{int}t} &= e^{-i\sigma_z^{\text{ (A)}}t} e^{-i\sigma_z^{\text{ (B)}}t} e^{-i\sigma_z^{\text{ (C)}}t} \text{, similarly for } e^{-iH_{cpl}t} \text{.} \end{split}$$

Trotterize: e^{-iHt}

$$= \left(e^{-i(H_{int} + H_{cpl})\frac{t}{N}}\right)^N$$

- Example: Triangle XY-model.
 - Three spin- $\frac{1}{2}$ systems A, B, C.
 - Hamiltonian:

$$H = \sigma_z^{\text{ (A)}} + \sigma_z^{\text{ (B)}} + \sigma_z^{\text{ (C)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (B)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (C)}} + \sigma_x^{\text{ (B)}} \sigma_x^{\text{ (C)}}$$
 Each term in H is readily simulatable.

$$e^{-i\sigma_z}$$
: A z-rotation.

$$e^{-i\sigma_x}^{(\mathsf{U})}\sigma_x^{(\mathsf{V})}t$$
 :

 $e^{-i\sigma_x^{(\mathsf{U})}\sigma_x^{(\mathsf{V})}t}$: Conjugate of an x-rotation by cnots.

$$\begin{split} H_{int} &= \sigma_z^{\text{ (A)}} + \sigma_z^{\text{ (B)}} + \sigma_z^{\text{ (C)}} \text{, } H_{cpl} = \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (B)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (C)}} + \sigma_x^{\text{ (B)}} \sigma_x^{\text{ (C)}} \text{.} \\ e^{-iH_{int}t} &= e^{-i\sigma_z^{\text{ (A)}}t} e^{-i\sigma_z^{\text{ (B)}}t} e^{-i\sigma_z^{\text{ (C)}}t} \text{, similarly for } e^{-iH_{cpl}t} \text{.} \end{split}$$

Trotterize:
$$e^{-iHt} = \left(e^{-i(H_{int}+H_{cpl})\frac{t}{N}}\right)^N$$

- Example: Triangle XY-model.
 - Three spin- $\frac{1}{2}$ systems A, B, C.
 - Hamiltonian:

 $H = \sigma_z^{(A)} + \sigma_z^{(B)} + \sigma_z^{(C)} + \sigma_x^{(A)} \sigma_x^{(B)} + \sigma_x^{(A)} \sigma_x^{(C)} + \sigma_x^{(B)} \sigma_x^{(C)}$ Each term in H is readily simulatable.

$$e^{-i\sigma_z \overset{(\mathsf{U})}{t}}$$
: A z -rotation.

$$e^{-i\sigma_x^{(\mathsf{U})}\sigma_x^{(\mathsf{V})}t}$$
 :

 $e^{-i\sigma_x^{(\mathsf{U})}\sigma_x^{(\mathsf{V})}t}$: Conjugate of an x-rotation by cnots.

$$\begin{split} H_{int} &= \sigma_z^{\text{ (A)}} + \sigma_z^{\text{ (B)}} + \sigma_z^{\text{ (C)}} \text{, } H_{cpl} = \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (B)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (C)}} + \sigma_x^{\text{ (B)}} \sigma_x^{\text{ (C)}} \text{.} \\ e^{-iH_{int}t} &= e^{-i\sigma_z^{\text{ (A)}}t} e^{-i\sigma_z^{\text{ (B)}}t} e^{-i\sigma_z^{\text{ (C)}}t} \text{, similarly for } e^{-iH_{cpl}t} \text{.} \end{split}$$

Trotterize:
$$e^{-iHt} = \left(e^{-i(H_{int}+H_{cpl})\frac{t}{N}}\right)^N$$

= $\left((1-iH_{int}\frac{t}{N}-iH_{cpl}\frac{t}{N}+O((|H|\frac{t}{N})^2))\right)^N$

- Example: Triangle XY-model.
 - Three spin- $\frac{1}{2}$ systems A, B, C.
 - Hamiltonian:

 $H = \sigma_z^{(A)} + \sigma_z^{(B)} + \sigma_z^{(C)} + \sigma_x^{(A)} \sigma_x^{(B)} + \sigma_x^{(A)} \sigma_x^{(C)} + \sigma_x^{(B)} \sigma_x^{(C)}$ Each term in H is readily simulatable.

$$e^{-i\sigma_z \overset{(\mathsf{U})}{t}}$$
: A z -rotation.

$$e^{-i\sigma_x}^{(\mathsf{U})}\sigma_x^{(\mathsf{V})}t$$
 :

 $e^{-i\sigma_x^{(U)}\sigma_x^{(V)}t}$: Conjugate of an x-rotation by cnots.

But the terms do not all commute. Combine commuting terms:

$$\begin{split} H_{int} &= \sigma_z^{\text{ (A)}} + \sigma_z^{\text{ (B)}} + \sigma_z^{\text{ (C)}} \text{, } H_{cpl} = \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (B)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (C)}} + \sigma_x^{\text{ (B)}} \sigma_x^{\text{ (C)}} \text{.} \\ e^{-iH_{int}t} &= e^{-i\sigma_z^{\text{ (A)}}t} e^{-i\sigma_z^{\text{ (B)}}t} e^{-i\sigma_z^{\text{ (C)}}t} \text{, similarly for } e^{-iH_{cpl}t} \text{.} \end{split}$$

Trotterize: e^{-iHt}

$$= \left(\left(1 - iH_{int} \frac{t}{N} - iH_{cpl} \frac{t}{N} + O((|H| \frac{t}{N})^2) \right) \right)^N$$

- Example: Triangle XY-model.
 - Three spin- $\frac{1}{2}$ systems A, B, C.
 - Hamiltonian:

$$H = \sigma_z^{\text{ (A)}} + \sigma_z^{\text{ (B)}} + \sigma_z^{\text{ (C)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (B)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (C)}} + \sigma_x^{\text{ (B)}} \sigma_x^{\text{ (C)}}$$
 Each term in H is readily simulatable.

$$e^{-i\sigma_z}$$
: A z-rotation.

$$e^{-i\sigma_x^{(\mathsf{U})}\sigma_x^{(\mathsf{V})}t}$$
:

 $e^{-i\sigma_x^{(\mathsf{U})}\sigma_x^{(\mathsf{V})}t}$: Conjugate of an x-rotation by cnots.

$$\begin{split} H_{int} &= \sigma_z^{\text{ (A)}} + \sigma_z^{\text{ (B)}} + \sigma_z^{\text{ (C)}} \text{, } H_{cpl} = \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (B)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (C)}} + \sigma_x^{\text{ (B)}} \sigma_x^{\text{ (C)}} \text{.} \\ e^{-iH_{int}t} &= e^{-i\sigma_z^{\text{ (A)}}t} e^{-i\sigma_z^{\text{ (B)}}t} e^{-i\sigma_z^{\text{ (C)}}t} \text{, similarly for } e^{-iH_{cpl}t} \text{.} \end{split}$$

Trotterize:
$$e^{-iHt} = \left((1 - iH_{int}\frac{t}{N} - iH_{cpl}\frac{t}{N} + O((|H|\frac{t}{N})^2)) \right)^N$$

- Example: Triangle XY-model.
 - Three spin- $\frac{1}{2}$ systems A, B, C.
 - Hamiltonian:

$$H = \sigma_z^{\text{ (A)}} + \sigma_z^{\text{ (B)}} + \sigma_z^{\text{ (C)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (B)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (C)}} + \sigma_x^{\text{ (B)}} \sigma_x^{\text{ (C)}}$$
 Each term in H is readily simulatable.

$$e^{-i\sigma_z^{(U)}t}$$
: A z-rotation.

$$e^{-i\sigma_x} \sigma_x^{(\mathsf{U})} \sigma_x^{(\mathsf{V})} t$$
 :

 $e^{-i\sigma_x^{(\mathrm{U})}\sigma_x^{(\mathrm{V})}t}$: Conjugate of an x-rotation by cnots.

$$\begin{split} H_{int} &= \sigma_z^{\text{ (A)}} + \sigma_z^{\text{ (B)}} + \sigma_z^{\text{ (C)}} \text{, } H_{cpl} = \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (B)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (C)}} + \sigma_x^{\text{ (B)}} \sigma_x^{\text{ (C)}} \text{.} \\ e^{-iH_{int}t} &= e^{-i\sigma_z^{\text{ (A)}}t} e^{-i\sigma_z^{\text{ (B)}}t} e^{-i\sigma_z^{\text{ (C)}}t} \text{, similarly for } e^{-iH_{cpl}t} \text{.} \end{split}$$

Trotterize:
$$e^{-iHt} = \left((1 - iH_{int}\frac{t}{N} - iH_{cpl}\frac{t}{N} + O((|H|\frac{t}{N})^2)) \right)^N$$

= $\left((1 - iH_{int}\frac{t}{N})(1 - iH_{cpl}\frac{t}{N}) + O((|H|\frac{t}{N})^2) \right)^N$

- Example: Triangle XY-model.
 - Three spin- $\frac{1}{2}$ systems A, B, C.
 - Hamiltonian:

 $H = \sigma_z^{(A)} + \sigma_z^{(B)} + \sigma_z^{(C)} + \sigma_x^{(A)} \sigma_x^{(B)} + \sigma_x^{(A)} \sigma_x^{(C)} + \sigma_x^{(B)} \sigma_x^{(C)}$ Each term in H is readily simulatable.

$$e^{-i\sigma_z}$$
: A z-rotation.

$$e^{-i\sigma_x}^{(\mathsf{U})}\sigma_x^{(\mathsf{V})}t$$
:

 $e^{-i\sigma_x^{(\mathsf{U})}\sigma_x^{(\mathsf{V})}t}$: Conjugate of an x-rotation by cnots.

But the terms do not all commute. Combine commuting terms:

$$\begin{split} H_{int} &= \sigma_z^{\text{ (A)}} + \sigma_z^{\text{ (B)}} + \sigma_z^{\text{ (C)}} \text{, } H_{cpl} = \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (B)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (C)}} + \sigma_x^{\text{ (B)}} \sigma_x^{\text{ (C)}} \text{.} \\ e^{-iH_{int}t} &= e^{-i\sigma_z^{\text{ (A)}}t} e^{-i\sigma_z^{\text{ (B)}}t} e^{-i\sigma_z^{\text{ (C)}}t} \text{, similarly for } e^{-iH_{cpl}t} \text{.} \end{split}$$

Trotterize: e^{-iHt}

$$= \left((1 - iH_{int} \frac{t}{N}) (1 - iH_{cpl} \frac{t}{N}) + O((|H| \frac{t}{N})^2) \right)^N$$

- Example: Triangle *XY*-model.
 - Three spin- $\frac{1}{2}$ systems A, B, C.
 - Hamiltonian:

$$H = \sigma_z^{\text{ (A)}} + \sigma_z^{\text{ (B)}} + \sigma_z^{\text{ (C)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (B)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (C)}} + \sigma_x^{\text{ (B)}} \sigma_x^{\text{ (C)}}$$
 Each term in H is readily simulatable.

$$e^{-i\sigma_z^{(\mathsf{U})}t}$$
: A z-rotation.

 $e^{-i\sigma_x^{(\mathsf{U})}\sigma_x^{(\mathsf{V})}t}$: Conjugate of an x-rotation by cnots.

$$\begin{split} H_{int} &= \sigma_z^{\text{ (A)}} + \sigma_z^{\text{ (B)}} + \sigma_z^{\text{ (C)}} \text{, } H_{cpl} = \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (B)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (C)}} + \sigma_x^{\text{ (B)}} \sigma_x^{\text{ (C)}} \text{.} \\ e^{-iH_{int}t} &= e^{-i\sigma_z^{\text{ (A)}}t} e^{-i\sigma_z^{\text{ (B)}}t} e^{-i\sigma_z^{\text{ (C)}}t} \text{, similarly for } e^{-iH_{cpl}t} \text{.} \end{split}$$

Trotterize:
$$e^{-iHt} = \left((1 - iH_{int}\frac{t}{N})(1 - iH_{cpl}\frac{t}{N}) + O((|H|\frac{t}{N})^2) \right)^N$$

- Example: Triangle XY-model.
 - Three spin- $\frac{1}{2}$ systems A, B, C.
 - Hamiltonian:

 $H = \sigma_z^{(A)} + \sigma_z^{(B)} + \sigma_z^{(C)} + \sigma_x^{(A)} \sigma_x^{(B)} + \sigma_x^{(A)} \sigma_x^{(C)} + \sigma_x^{(B)} \sigma_x^{(C)}$ Each term in H is readily simulatable.

$$e^{-i\sigma_z}$$
: A z -rotation.

$$e^{-i\sigma_x^{(\mathsf{U})}\sigma_x^{(\mathsf{V})}t}$$
 : Co

 $e^{-i\sigma_x^{(\mathrm{U})}\sigma_x^{(\mathrm{V})}t}$: Conjugate of an x-rotation by cnots.

$$\begin{split} H_{int} &= \sigma_z^{\text{ (A)}} + \sigma_z^{\text{ (B)}} + \sigma_z^{\text{ (C)}} \text{, } H_{cpl} = \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (B)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (C)}} + \sigma_x^{\text{ (B)}} \sigma_x^{\text{ (C)}} \text{.} \\ e^{-iH_{int}t} &= e^{-i\sigma_z^{\text{ (A)}}t} e^{-i\sigma_z^{\text{ (B)}}t} e^{-i\sigma_z^{\text{ (C)}}t} \text{, similarly for } e^{-iH_{cpl}t} \text{.} \end{split}$$

Trotterize:
$$e^{-iHt} = \left((1 - iH_{int}\frac{t}{N})(1 - iH_{cpl}\frac{t}{N}) + O((|H|\frac{t}{N})^2) \right)^N$$

= $\left(e^{-iH_{int}\frac{t}{N}}e^{-iH_{cpl}\frac{t}{N}} + O((|H|\frac{t}{N})^2) \right)^N$

- Example: Triangle XY-model.
 - Three spin- $\frac{1}{2}$ systems A, B, C.
 - Hamiltonian:

 $H = \sigma_z^{(A)} + \sigma_z^{(B)} + \sigma_z^{(C)} + \sigma_x^{(A)} \sigma_x^{(B)} + \sigma_x^{(A)} \sigma_x^{(C)} + \sigma_x^{(B)} \sigma_x^{(C)}$ Each term in H is readily simulatable.

$$e^{-i\sigma_z}^{(\mathsf{U})}t$$
: A z-rotation.

$$e^{-i\sigma_x^{(\mathsf{U})}\sigma_x^{(\mathsf{V})}t}$$
:

 $e^{-i\sigma_x^{(\mathsf{U})}\sigma_x^{(\mathsf{V})}t}$: Conjugate of an x-rotation by cnots.

But the terms do not all commute. Combine commuting terms:

$$\begin{split} H_{int} &= \sigma_z^{\text{ (A)}} + \sigma_z^{\text{ (B)}} + \sigma_z^{\text{ (C)}} \text{, } H_{cpl} = \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (B)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (C)}} + \sigma_x^{\text{ (B)}} \sigma_x^{\text{ (C)}} \text{.} \\ e^{-iH_{int}t} &= e^{-i\sigma_z^{\text{ (A)}}t} e^{-i\sigma_z^{\text{ (B)}}t} e^{-i\sigma_z^{\text{ (C)}}t} \text{, similarly for } e^{-iH_{cpl}t} \text{.} \end{split}$$

Trotterize: e^{-iHt}

$$= \left(e^{-iH_{int}\frac{t}{N}}e^{-iH_{cpl}\frac{t}{N}} + O((|H|\frac{t}{N})^2)\right)^N$$

- Example: Triangle *XY*-model.
 - Three spin- $\frac{1}{2}$ systems A, B, C.
 - Hamiltonian:

$$H = \sigma_z^{\text{ (A)}} + \sigma_z^{\text{ (B)}} + \sigma_z^{\text{ (C)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (B)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (C)}} + \sigma_x^{\text{ (B)}} \sigma_x^{\text{ (C)}}$$
 Each term in H is readily simulatable.

$$e^{-i\sigma_z}^{(\mathsf{U})} t$$
: A z-rotation.

$$e^{-i\sigma_x^{(\mathsf{U})}\sigma_x^{(\mathsf{V})}t}$$
 : Conjugate of an x -rotation by cnots.

$$\begin{split} H_{int} &= \sigma_z^{\text{ (A)}} + \sigma_z^{\text{ (B)}} + \sigma_z^{\text{ (C)}} \text{, } H_{cpl} = \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (B)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (C)}} + \sigma_x^{\text{ (B)}} \sigma_x^{\text{ (C)}} \text{.} \\ e^{-iH_{int}t} &= e^{-i\sigma_z^{\text{ (A)}}t} e^{-i\sigma_z^{\text{ (B)}}t} e^{-i\sigma_z^{\text{ (C)}}t} \text{, similarly for } e^{-iH_{cpl}t} \text{.} \end{split}$$

Trotterize:
$$e^{-iHt} = \left(e^{-iH_{int}\frac{t}{N}}e^{-iH_{cpl}\frac{t}{N}} + O((|H|\frac{t}{N})^2)\right)^N$$

- Example: Triangle *XY*-model.
 - Three spin- $\frac{1}{2}$ systems A, B, C.
 - Hamiltonian:

$$H = \sigma_z^{\,(A)} + \sigma_z^{\,(B)} + \sigma_z^{\,(C)} + \sigma_x^{\,(A)} \sigma_x^{\,(B)} + \sigma_x^{\,(A)} \sigma_x^{\,(C)} + \sigma_x^{\,(B)} \sigma_x^{\,(C)}$$
 Each term in H is readily simulatable.

$$e^{-i\sigma_z}^{(\mathsf{U})}t$$
: A z -rotation.

 $e^{-i\sigma_x^{(\mathsf{U})}\sigma_x^{(\mathsf{V})}t}$: Conjugate of an x-rotation by cnots.

$$\begin{split} H_{int} &= \sigma_z^{\text{ (A)}} + \sigma_z^{\text{ (B)}} + \sigma_z^{\text{ (C)}} \text{, } H_{cpl} = \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (B)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (C)}} + \sigma_x^{\text{ (B)}} \sigma_x^{\text{ (C)}} \text{.} \\ e^{-iH_{int}t} &= e^{-i\sigma_z^{\text{ (A)}}t} e^{-i\sigma_z^{\text{ (B)}}t} e^{-i\sigma_z^{\text{ (C)}}t} \text{, similarly for } e^{-iH_{cpl}t} \text{.} \end{split}$$

Trotterize:
$$e^{-iHt} = \left(e^{-iH_{int}\frac{t}{N}}e^{-iH_{cpl}\frac{t}{N}} + O((|H|\frac{t}{N})^2)\right)^N$$

= $\left(e^{-iH_{int}\frac{t}{N}}e^{-iH_{cpl}\frac{t}{N}}\right)^N + O(|H|^2\frac{t^2}{N})$

- Example: Triangle XY-model.
 - Three spin- $\frac{1}{2}$ systems A, B, C.
 - Hamiltonian:

 $H = \sigma_z^{\text{ (A)}} + \sigma_z^{\text{ (B)}} + \sigma_z^{\text{ (C)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (B)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (C)}} + \sigma_x^{\text{ (B)}} \sigma_x^{\text{ (C)}}$ Each term in H is readily simulatable.

$$e^{-i\sigma_z^{(\mathsf{U})}t}$$
: A z-rotation.

$$e^{-i\sigma_x^{(\mathsf{U})}\sigma_x^{(\mathsf{V})}t}$$
 : Conjugate of an x -rotation by cnots.

But the terms do not all commute. Combine commuting terms:

$$\begin{split} H_{int} &= \sigma_z^{\text{ (A)}} + \sigma_z^{\text{ (B)}} + \sigma_z^{\text{ (C)}} \text{, } H_{cpl} = \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (B)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (C)}} + \sigma_x^{\text{ (B)}} \sigma_x^{\text{ (C)}} \text{.} \\ e^{-iH_{int}t} &= e^{-i\sigma_z^{\text{ (A)}}t} e^{-i\sigma_z^{\text{ (B)}}t} e^{-i\sigma_z^{\text{ (C)}}t} \text{, similarly for } e^{-iH_{cpl}t} \text{.} \end{split}$$

Trotterize: e^{-iHt}

$$= \left(e^{-iH_{int}\frac{t}{N}}e^{-iH_{cpl}\frac{t}{N}}\right)^N + O(|H|^2\frac{t^2}{N})$$

- Example: Triangle XY-model.
 - Three spin- $\frac{1}{2}$ systems A, B, C.
 - Hamiltonian:

$$H = \sigma_z^{\text{ (A)}} + \sigma_z^{\text{ (B)}} + \sigma_z^{\text{ (C)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (B)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (C)}} + \sigma_x^{\text{ (B)}} \sigma_x^{\text{ (C)}}$$
 Each term in H is readily simulatable.

$$e^{-i\sigma_z}^{(\mathsf{U})}t$$
: A z-rotation.

$$e^{-i\sigma_x^{(0)}\sigma_x^{(V)}t}$$
:

 $e^{-i\sigma_x^{(\mathsf{U})}\sigma_x^{(\mathsf{V})}t}$: Conjugate of an x-rotation by cnots.

$$\begin{split} H_{int} &= \sigma_z^{\text{ (A)}} + \sigma_z^{\text{ (B)}} + \sigma_z^{\text{ (C)}} \text{, } H_{cpl} = \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (B)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (C)}} + \sigma_x^{\text{ (B)}} \sigma_x^{\text{ (C)}} \text{.} \\ e^{-iH_{int}t} &= e^{-i\sigma_z^{\text{ (A)}}t} e^{-i\sigma_z^{\text{ (B)}}t} e^{-i\sigma_z^{\text{ (C)}}t} \text{, similarly for } e^{-iH_{cpl}t} \text{.} \end{split}$$

Trotterize:
$$e^{-iHt} = \left(e^{-iH_{int}\frac{t}{N}}e^{-iH_{cpl}\frac{t}{N}}\right)^N + O(|H|^2\frac{t^2}{N})$$

- Example: Triangle XY-model.
 - Three spin- $\frac{1}{2}$ systems A, B, C.
 - Hamiltonian:

$$H = \sigma_z^{\,(A)} + \sigma_z^{\,(B)} + \sigma_z^{\,(C)} + \sigma_x^{\,(A)} \sigma_x^{\,(B)} + \sigma_x^{\,(A)} \sigma_x^{\,(C)} + \sigma_x^{\,(B)} \sigma_x^{\,(C)}$$
 Each term in H is readily simulatable.

$$e^{-i\sigma_z \overset{(\mathsf{U})}{t}}$$
: A z -rotation.

 $e^{-i\sigma_x^{(\mathrm{U})}\sigma_x^{(\mathrm{V})}t}$: Conjugate of an x-rotation by cnots.

$$\begin{split} H_{int} &= \sigma_z^{\text{ (A)}} + \sigma_z^{\text{ (B)}} + \sigma_z^{\text{ (C)}} \text{, } H_{cpl} = \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (B)}} + \sigma_x^{\text{ (A)}} \sigma_x^{\text{ (C)}} + \sigma_x^{\text{ (B)}} \sigma_x^{\text{ (C)}} \text{.} \\ e^{-iH_{int}t} &= e^{-i\sigma_z^{\text{ (A)}}t} e^{-i\sigma_z^{\text{ (B)}}t} e^{-i\sigma_z^{\text{ (C)}}t} \text{, similarly for } e^{-iH_{cpl}t} \text{.} \end{split}$$

$$\begin{array}{lll} \text{Trotterize:} & e^{-iHt} & = & \left(e^{-iH_{int}\frac{t}{N}}e^{-iH_{cpl}\frac{t}{N}}\right)^{N} + O(|H|^{2}\frac{t^{2}}{N}) \\ & e^{-iHt} & = & \left(e^{-iH_{int}\frac{t}{2N}}e^{-iH_{cpl}\frac{t}{N}}e^{-iH_{int}\frac{t}{2N}}\right)^{N} + O(|H|^{3}\frac{t^{3}}{N^{2}}) \end{array}$$

Physical universality thesis for quantum computers.

Given: Physical system S.

Physical Hamiltonian $H \geq 0$ for S.

Physically meaningful state $|\psi\rangle$ of S of av. energy E.

Then: It is possible to represent S, H and $|\psi\rangle$ on qubits,

and evolve H for time t using quantum gates,

with resources polynomial in

Physical universality thesis for quantum computers.

Given: Physical system S.

Physical Hamiltonian $H \geq 0$ for S.

Physically meaningful state $|\psi\rangle$ of S of av. energy E.

Then: It is possible to represent S, H and $|\psi\rangle$ on qubits,

and evolve H for time t using quantum gates,

with resources polynomial in

E, t and the approximation error.

Evidence: No counterexample so far....

Physical universality thesis for quantum computers.

Given: Physical system S.

Physical Hamiltonian $H \geq 0$ for S.

Physically meaningful state $|\psi\rangle$ of S of av. energy E.

Then: It is possible to represent S, H and $|\psi\rangle$ on qubits,

and evolve H for time t using quantum gates,

with resources polynomial in

- Evidence: No counterexample so far....
- Typical representation relationships:
 - S can be approximated by N degrees of freedom.

Physical universality thesis for quantum computers.

Given: Physical system S.

Physical Hamiltonian $H \geq 0$ for S.

Physically meaningful state $|\psi\rangle$ of S of av. energy E.

Then: It is possible to represent S, H and $|\psi\rangle$ on qubits,

and evolve H for time t using quantum gates,

with resources polynomial in

- Evidence: No counterexample so far....
- Typical representation relationships:
 - S can be approximated by N degrees of freedom.
 - Hamiltonian: Sum of pairwise interactions between degrees of freedom.

Physical universality thesis for quantum computers.

Given: Physical system S.

Physical Hamiltonian $H \geq 0$ for S.

Physically meaningful state $|\psi\rangle$ of S of av. energy E.

Then: It is possible to represent S, H and $|\psi\rangle$ on qubits,

and evolve H for time t using quantum gates,

with resources polynomial in

- Evidence: No counterexample so far....
- Typical representation relationships:
 - S can be approximated by N degrees of freedom.
 - Hamiltonian: Sum of pairwise interactions between degrees of freedom.
 - The energy is linear (maybe quadratic) in N.

Physical universality thesis for quantum computers.

Given: Physical system S.

Physical Hamiltonian $H \geq 0$ for S.

Physically meaningful state $|\psi\rangle$ of S of av. energy E.

Then: It is possible to represent S, H and $|\psi\rangle$ on qubits,

and evolve H for time t using quantum gates,

with resources polynomial in

- Evidence: No counterexample so far....
- Typical representation relationships:
 - S can be approximated by N degrees of freedom.
 - Hamiltonian: Sum of pairwise interactions between degrees of freedom.
 - The energy is linear (maybe quadratic) in N.
 - A degree of freedom can be approximated by a "small" qubit register.

Physical universality thesis for quantum computers.

Given: Physical system S.

Physical Hamiltonian $H \geq 0$ for S.

Physically meaningful state $|\psi\rangle$ of S of av. energy E.

Then: It is possible to represent S, H and $|\psi\rangle$ on qubits,

and evolve H for time t using quantum gates,

with resources polynomial in

- Evidence: No counterexample so far....
- Typical representation relationships:
 - S can be approximated by N degrees of freedom.
 - Hamiltonian: Sum of pairwise interactions between degrees of freedom.
 - The energy is linear (maybe quadratic) in N.
 - A degree of freedom can be approximated by a "small" qubit register.
 - Simulating an arbitrary interaction on a pair of small registers is "efficient".

 Quantum computers can efficiently simulate an experimental procedure on a specified quantum system.

- Quantum computers can efficiently simulate an experimental procedure on a specified quantum system.
- Requirements:

 $\sqrt{}$ Qubit representation of the quantum system.

- Quantum computers can efficiently simulate an experimental procedure on a specified quantum system.
- Requirements:
 - $\sqrt{}$ Qubit representation of the quantum system.
 - √ Evolution of its internal Hamiltonian.

- Quantum computers can efficiently simulate an experimental procedure on a specified quantum system.
- Requirements:
 - $\sqrt{}$ Qubit representation of the quantum system.
 - √ Evolution of its internal Hamiltonian.
 - $\sqrt{}$ Simulation of coupling to experimental probes.

- Quantum computers can efficiently simulate an experimental procedure on a specified quantum system.
- Requirements:
 - $\sqrt{}$ Qubit representation of the quantum system.
 - $\sqrt{}$ Evolution of its internal Hamiltonian.
 - $\sqrt{}$ Simulation of coupling to experimental probes.
 - Preparation of a physically meaningful initial state.

- Quantum computers can efficiently simulate an experimental procedure on a specified quantum system.
- Requirements:
 - $\sqrt{\ }$ Qubit representation of the quantum system.
 - √ Evolution of its internal Hamiltonian.
 - $\sqrt{}$ Simulation of coupling to experimental probes.
 - Preparation of a physically meaningful initial state.
 - Implementation of measurements with noise no worse than the actual experiment would have.

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Unitary $U^{(S)}$, with "controlled" implementations.

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Unitary $U^{(S)}$, with "controlled" implementations.

Problem: Measure $\langle \psi | U | \psi \rangle$ to within ϵ .

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Unitary $U^{(S)}$, with "controlled" implementations.

Problem: Measure $\langle \psi | U | \psi \rangle$ to within ϵ .

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Unitary $U^{(S)}$, with "controlled" implementations.

Problem: Measure $\langle \psi | U | \psi \rangle$ to within ϵ .

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Unitary $U^{(S)}$, with "controlled" implementations.

Problem: Measure $\langle \psi | U | \psi \rangle$ to within ϵ .

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Unitary $U^{(S)}$, with "controlled" implementations.

Problem: Measure $\langle \psi | U | \psi \rangle$ to within ϵ .

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Unitary $U^{(S)}$, with "controlled" implementations.

Problem: Measure $\langle \psi | U | \psi \rangle$ to within ϵ .

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Unitary $U^{(S)}$, with "controlled" implementations.

Problem: Measure $\langle \psi | U | \psi \rangle$ to within ϵ .

Solution with one qubit.

- Get $\operatorname{Re}\langle\psi|U|\psi\rangle$ from $\operatorname{Prob}(b_r=1)\pm\epsilon/2$.

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Unitary $U^{(S)}$, with "controlled" implementations.

Problem: Measure $\langle \psi | U | \psi \rangle$ to within ϵ .

- Get $\operatorname{Re}\langle\psi|U|\psi\rangle$ from $\operatorname{Prob}(b_r=1)\pm\epsilon/2$.
- To obtain $\operatorname{Im}\langle\psi|U|\psi\rangle$, replace U by iU.

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Unitary $U^{(S)}$, with "controlled" implementations.

Problem: Measure $\langle \psi | U | \psi \rangle$ to within ϵ .

- Get $\operatorname{Re}\langle\psi|U|\psi\rangle$ from $\operatorname{Prob}(b_r=1)\pm\epsilon/2$.
- To obtain ${\rm Im}\langle\psi|U|\psi\rangle$, replace U by iU.
- Requires $O(1/\epsilon^2)$ repetitions.

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Unitary $U^{(S)}$, with "controlled" implementations.

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Unitary $U^{(S)}$, with "controlled" implementations.

Problem: Measure $\langle \psi | U | \psi \rangle$ to within ϵ .

Solution with amplitude estimation.

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Unitary $U^{(S)}$, with "controlled" implementations.

Problem: Measure $\langle \psi | U | \psi \rangle$ to within ϵ .

Solution with amplitude estimation.

Assume that $Z_{\psi} =$ "selective -1 of $|\psi\rangle$ " is implementable.

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Unitary $U^{(S)}$, with "controlled" implementations.

Problem: Measure $\langle \psi | U | \psi \rangle$ to within ϵ .

Solution with amplitude estimation.

Assume that Z_{ψ} = "selective -1 of $|\psi\rangle$ " is implementable.

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Unitary $U^{(S)}$, with "controlled" implementations.

Problem: Measure $\langle \psi | U | \psi \rangle$ to within ϵ .

Solution with amplitude estimation.

Assume that Z_{ψ} = "selective -1 of $|\psi\rangle$ " is implementable.

- Obtain $|\langle \psi | U | \psi \rangle|$ from $\pm \arcsin(|\langle \psi | U | \psi \rangle|)/\pi) \pm \delta$.

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Unitary $U^{(S)}$, with "controlled" implementations.

Problem: Measure $\langle \psi | U | \psi \rangle$ to within ϵ .

Solution with amplitude estimation.

Assume that $Z_{\psi} =$ "selective -1 of $|\psi\rangle$ " is implementable.

- Obtain $|\langle \psi | U | \psi \rangle|$ from $\pm \arcsin(|\langle \psi | U | \psi \rangle|)/\pi) \pm \delta$.
- Infer $\langle \psi | U | \psi \rangle$ by doing the same with

$$U' = U^{(s)} |\mathfrak{d}_A^{\wedge} \mathfrak{d}| \pm |\mathfrak{1}_A^{\wedge} \mathfrak{d}| \text{ and } |\psi'\rangle = |\psi_{s}| + \lambda.$$

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Unitary $U^{(S)}$, with "controlled" implementations.

Problem: Measure $\langle \psi | U | \psi \rangle$ to within ϵ .

Solution with amplitude estimation.

Assume that $Z_{\psi} =$ "selective -1 of $|\psi\rangle$ " is implementable.

- Obtain $|\langle \psi | U | \psi \rangle|$ from $\pm \arcsin(|\langle \psi | U | \psi \rangle|)/\pi) \pm \delta$.
- Infer $\langle \psi | U | \psi \rangle$ by doing the same with $U' = U^{(s)} | \mathfrak{o}_{\mathbb{A}}^{\mathbb{A}} \langle \mathfrak{o} | \pm | \mathfrak{1}_{\mathbb{A}}^{\mathbb{A}} \langle \mathfrak{1} | \text{ and } | \psi' \rangle = | \psi_{\mathbb{S}} | + \rangle_{\mathbb{A}}.$
- Requires $O(1/\epsilon)$ coherent, controlled applications of U.

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Hermitian $A^{(S)}$ with e^{-itA} implementable.

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Hermitian $A^{(S)}$ with e^{-itA} implementable.

- Solution using unitary expectation measurements.
 - 1. For small t, $e^{-iAt} = 1 itA + O(|A|^2t^2)$.

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Hermitian $A^{(S)}$ with e^{-itA} implementable.

Problem: Measure $\langle \psi | A | \psi \rangle$ to within ϵ .

Solution using unitary expectation measurements.

1. For small
$$t$$
, $e^{-iAt} = 1 - itA + O(|A|^2t^2)$. $\langle \psi | e^{-iAt} | \psi \rangle = 1 - it \langle \psi | A | \psi \rangle + O(|A|^2t^2)$

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Hermitian $A^{(S)}$ with e^{-itA} implementable.

- Solution using unitary expectation measurements.
 - 1. For small t, $e^{-iAt} = 1 itA + O(|A|^2 t^2)$. $\langle \psi | e^{-iAt} | \psi \rangle = 1 it \langle \psi | A | \psi \rangle + O(|A|^2 t^2)$
 - 2. Choose t such that $O(|A|^2t^2)$ contributes at most $t\epsilon/2$.

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Hermitian $A^{(S)}$ with e^{-itA} implementable.

- Solution using unitary expectation measurements.
 - 1. For small t, $e^{-iAt} = 1 itA + O(|A|^2t^2)$. $\langle \psi | e^{-iAt} | \psi \rangle = 1 it \langle \psi | A | \psi \rangle + O(|A|^2t^2)$
 - 2. Choose t such that $O(|A|^2t^2)$ contributes at most $t\epsilon/2$.

$$t = O(\epsilon/|A|^2)$$

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Hermitian $A^{(S)}$ with e^{-itA} implementable.

- Solution using unitary expectation measurements.
 - 1. For small t, $e^{-iAt} = 1 itA + O(|A|^2 t^2)$. $\langle \psi | e^{-iAt} | \psi \rangle = 1 it \langle \psi | A | \psi \rangle + O(|A|^2 t^2)$
 - 2. Choose t such that $O(|A|^2t^2)$ contributes at most $t\epsilon/2$. $t = O(\epsilon/|A|^2)$
 - 3. Measure $\langle \psi | e^{-iAt} | \psi \rangle$ to within $t\epsilon/2$.

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Hermitian $A^{(S)}$ with e^{-itA} implementable.

- Solution using unitary expectation measurements.
 - 1. For small t, $e^{-iAt} = 1 itA + O(|A|^2 t^2)$. $\langle \psi | e^{-iAt} | \psi \rangle = 1 it \langle \psi | A | \psi \rangle + O(|A|^2 t^2)$
 - 2. Choose t such that $O(|A|^2t^2)$ contributes at most $t\epsilon/2$. $t=O(\epsilon/|A|^2)$
 - 3. Measure $\langle \psi | e^{-iAt} | \psi \rangle$ to within $t\epsilon/2$.
 - Requires $O(|A|^2/\epsilon^2)$ uses of e^{-iAt} with amp. estimation.

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Operators A and B, implementable as needed.

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Operators A and B, implementable as needed.

Problem: Measure $\langle \psi | e^{iHt} B e^{-iHt} A | \psi \rangle$ to within ϵ .

• If A and B are unitary, let $U=e^{iHt}Be^{-iHt}A$ and measure $\langle\psi|U|\psi\rangle$ to within ϵ .

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Operators A and B, implementable as needed.

- If A and B are unitary, let $U=e^{iHt}Be^{-iHt}A$ and measure $\langle\psi|U|\psi\rangle$ to within ϵ .
- A and B are Hermitian. Let $B(t) = e^{iHt}Be^{-iHt}$

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Operators A and B, implementable as needed.

- If A and B are unitary, let $U=e^{iHt}Be^{-iHt}A$ and measure $\langle\psi|U|\psi\rangle$ to within ϵ .
- A and B are Hermitian. Let $B(t) = e^{iHt}Be^{-iHt}$

1. Obtain
$$S = \sum_{a,b=0,1} (-1)^{a+b} \langle \psi | e^{(-1)^a i B(t) s} e^{(-1)^b i A s} | \psi \rangle \pm \delta$$
.

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Operators A and B, implementable as needed.

- If A and B are unitary, let $U=e^{iHt}Be^{-iHt}A$ and measure $\langle\psi|U|\psi\rangle$ to within ϵ .
- A and B are Hermitian. Let $B(t) = e^{iHt}Be^{-iHt}$

1. Obtain
$$S = \sum_{a,b=0,1} (-1)^{a+b} \langle \psi | e^{(-1)^a i B(t) s} e^{(-1)^b i A s} | \psi \rangle \pm \delta$$
.

2.
$$S = 4(s^2 \langle \psi | B(t) A | \psi \rangle + O((|A| + |B|)^3 s^3)) \pm \delta.$$

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Operators A and B, implementable as needed.

- If A and B are unitary, let $U=e^{iHt}Be^{-iHt}A$ and measure $\langle\psi|U|\psi\rangle$ to within ϵ .
- A and B are Hermitian. Let $B(t) = e^{iHt}Be^{-iHt}$
 - 1. Obtain $S = \sum_{a,b=0,1} (-1)^{a+b} \langle \psi | e^{(-1)^a i B(t) s} e^{(-1)^b i A s} | \psi \rangle \pm \delta$.
 - 2. $S = 4(s^2 \langle \psi | B(t) A | \psi \rangle + O((|A| + |B|)^3 s^3)) \pm \delta$.
 - 3. Set $t = O(\epsilon/(|A| + |B|)^3)$, $\delta = O(\epsilon s^2)$.

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Operators A and B, implementable as needed.

- If A and B are unitary, let $U=e^{iHt}Be^{-iHt}A$ and measure $\langle\psi|U|\psi\rangle$ to within ϵ .
- A and B are Hermitian. Let $B(t) = e^{iHt}Be^{-iHt}$
 - 1. Obtain $S = \sum_{a,b=0,1} (-1)^{a+b} \langle \psi | e^{(-1)^a i B(t) s} e^{(-1)^b i A s} | \psi \rangle \pm \delta$.
 - 2. $S = 4(s^2 \langle \psi | B(t)A | \psi \rangle + O((|A| + |B|)^3 s^3)) \pm \delta$.
 - 3. Set $t = O(\epsilon/(|A| + |B|)^3)$, $\delta = O(\epsilon s^2)$.
 - Requires $O((|A|+|B|)^3/\epsilon^3)$ uses of $e^{(-1)^a i B(t) s} e^{(-1)^b i A s}$.

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Operators A and B, implementable as needed.

- If A and B are unitary, let $U=e^{iHt}Be^{-iHt}A$ and measure $\langle\psi|U|\psi\rangle$ to within ϵ .
- A and B are Hermitian. Let $B(t) = e^{iHt}Be^{-iHt}$
 - 1. Obtain $S = \sum_{a,b=0,1} (-1)^{a+b} \langle \psi | e^{(-1)^a i B(t) s} e^{(-1)^b i A s} | \psi \rangle \pm \delta$.
 - 2. $S = 4(s^2 \langle \psi | B(t) A | \psi \rangle + O((|A| + |B|)^3 s^3)) \pm \delta$.
 - 3. Set $t = O(\epsilon/(|A| + |B|)^3)$, $\delta = O(\epsilon s^2)$.
 - Requires $O((|A|+|B|)^3/\epsilon^3)$ uses of $e^{(-1)^a i B(t) s} e^{(-1)^b i A s}$.
- Note network simplification:

• Given: Quantum system S with Hamiltonian H.

Problem: Measure the spectrum of H.

• Given: Quantum system S with Hamiltonian H.

Problem: Measure the spectrum of H.

Spectrum of H: Multiset $\{\lambda_k\}_k$ of eigenvalues of H.

Measuring the full spectrum is typically exponentially hard.

Given: Quantum system S with Hamiltonian H.

Problem: Measure the spectrum of H.

- Measuring the full spectrum is typically exponentially hard.
- Spectral density with resolution ϵ and signal-to-noise (SNR) S.

• Given: Quantum system S with Hamiltonian H.

Problem: Measure the spectrum of H.

- Measuring the full spectrum is typically exponentially hard.
- Spectral density with resolution ϵ and signal-to-noise (SNR) S.

1. Measure
$$f(t) = \operatorname{tr}(e^{-iHt})/N \pm \delta$$
 for

$$t = 0, \dots, (M-2)\Delta, (M-1)\Delta.$$

• Given: Quantum system S with Hamiltonian H.

Problem: Measure the spectrum of H.

- Measuring the full spectrum is typically exponentially hard.
- Spectral density with resolution ϵ and signal-to-noise (SNR) S.
 - 1. Measure $f(t) = \operatorname{tr}(e^{-iHt})/N \pm \delta$ for

$$t=0,\ldots,(M-2)\Delta,(M-1)\Delta.$$

Note:
$$\operatorname{tr}(e^{-iHt})/N = \langle \psi | e^{-iHt} | \psi \rangle$$
 for $|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{k} |k\rangle_{S'}$.

• Given: Quantum system S with Hamiltonian H.

Problem: Measure the spectrum of H.

Spectrum of H: Multiset $\{\lambda_k\}_k$ of eigenvalues of H.

- Measuring the full spectrum is typically exponentially hard.
- Spectral density with resolution ϵ and signal-to-noise (SNR) S.
 - 1. Measure $f(t) = \operatorname{tr}(e^{-iHt})/N \pm \delta$ for

$$t=0,\ldots,(M-2)\Delta,(M-1)\Delta.$$

Note:
$$\operatorname{tr}(e^{-iHt})/N = \langle \psi | e^{-iHt} | \psi \rangle$$
 for $| \psi \rangle = \frac{1}{\sqrt{N}} \sum_{k} | k \rangle_{S'}$.

2. Compute the discrete Fourier transform \hat{f} of f.

Given: Quantum system S with Hamiltonian H.

Problem: Measure the spectrum of H.

Spectrum of H: Multiset $\{\lambda_k\}_k$ of eigenvalues of H.

- Measuring the full spectrum is typically exponentially hard.
- Spectral density with resolution ϵ and signal-to-noise (SNR) S.
 - 1. Measure $f(t) = \operatorname{tr}(e^{-iHt})/N \pm \delta$ for

$$t=0,\ldots,(M-2)\Delta,(M-1)\Delta.$$

Note: $\operatorname{tr}(e^{-iHt})/N = \langle \psi | e^{-iHt} | \psi \rangle$ for $|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{k} |k\rangle_{S'}$.

2. Compute the discrete Fourier transform \hat{f} of f.

$$\begin{array}{rcl} f(l\Delta) & = & \sum_{k} e^{-i\lambda_{k}\Delta l}/N \\ \hat{f} & = & \frac{1}{\sqrt{M}} \sum_{l} f(l\Delta) e^{i2\pi l/M} \end{array}$$

• Given: Quantum system S with Hamiltonian H.

Problem: Measure the spectrum of H.

Spectrum of H: Multiset $\{\lambda_k\}_k$ of eigenvalues of H.

- Measuring the full spectrum is typically exponentially hard.
- Spectral density with resolution ϵ and signal-to-noise (SNR) S.
 - 1. Measure $f(t) = \operatorname{tr}(e^{-iHt})/N \pm \delta$ for

$$t=0,\ldots,(M-2)\Delta,(M-1)\Delta.$$

Note: $\operatorname{tr}(e^{-iHt})/N = \langle \psi | e^{-iHt} | \psi \rangle$ for $|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{k} |k\rangle_{S'}$.

2. Compute the discrete Fourier transform \hat{f} of f.

$$\begin{array}{rcl} f(l\Delta) & = & \sum_{k} e^{-i\lambda_{k}\Delta l}/N \\ \hat{f} & = & \frac{1}{\sqrt{M}} \sum_{l} f(l\Delta) e^{i2\pi l/M} \end{array}$$

Range: $\frac{1}{\Delta} > |H|$. Resolution: $\frac{1}{M\Delta} < \epsilon$. SNR: $\delta < 1/S$.

Given: Quantum system S with Hamiltonian H.

Problem: Measure the spectrum of H.

Spectrum of H: Multiset $\{\lambda_k\}_k$ of eigenvalues of H.

- Measuring the full spectrum is typically exponentially hard.
- Spectral density with resolution ϵ and signal-to-noise (SNR) S.
 - 1. Measure $f(t) = \operatorname{tr}(e^{-iHt})/N \pm \delta$ for

$$t=0,\ldots,(M-2)\Delta,(M-1)\Delta.$$

Note: $\operatorname{tr}(e^{-iHt})/N = \langle \psi | e^{-iHt} | \psi \rangle$ for $|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{k} |k\rangle_{S'}$.

2. Compute the discrete Fourier transform \hat{f} of f.

$$\begin{array}{rcl} f(l\Delta) & = & \sum_{k} e^{-i\lambda_{k}\Delta l}/N \\ \hat{f} & = & \frac{1}{\sqrt{M}} \sum_{l} f(l\Delta) e^{i2\pi l/M} \end{array}$$

Range: $\frac{1}{\Delta} > |H|$. Resolution: $\frac{1}{M\Delta} < \epsilon$. SNR: $\delta < 1/S$.

- Requires $O(|H|S/\epsilon)$ uses of e^{-iHt} with t up to $O(1/\epsilon)$.

• Prepare the ground state of *H*?

Prepare the ground state of H?

... appears to be difficult in general.

- Prepare the ground state of H?
 - ... appears to be difficult in general.
- Prepare a thermodynamic state with density matrix $e^{-\beta H}/\mathrm{tr}(e^{-\beta H})$?

- Prepare the ground state of H?
 - ... appears to be difficult in general.
- Prepare a thermodynamic state with density matrix $e^{-\beta H}/\mathrm{tr}(e^{-\beta H})$?

... can simulate contact with a thermal bath, but efficiency?

Contents

Title: IQI 04, Seminar 13		. 0
Quantum Physics Simulation I	.top	1
Quantum Physics Simulation II	top	2
Physics Simulation Algorithms: Common Features	top	3
Faithful Evolution	.top	4
Simulatability of Physical Systems	.top	5
The Virtual Quantum Physics Lab	top	. 6
Measuring Unitary Expectations I		

Measuring Unitary Expectations II	top8
Measuring Hermitian Expectations	
Measuring Correlation Functions	top10
Measuring Spectra	top11
State preparation Problems	top 12
References	

References

- [1] R. P. Feynman. Simulating physics with computers. Int. J. Theor. Phys., 21:467–488, 1982.
- [2] S. Lloyd. Universal quantum simulators. Science, 273:1073-1078, 1996.
- [3] C. Zalka. Threshold estimate for fault tolerant quantum computation. quant-ph/9612028, 1996.
- [4] D. S. Abrams and S. Lloyd. Simulation of many-body fermi systems on a universal quantum computer. Phys. Rev. Lett., 79:2586–2589, 1997.
- [5] C. Miquel, J. P. Paz, M. Saraceno, E. Knill, R. Laflamme, and C. Negrevergne. Interpretation of tomography and spectroscopy as dual forms of quantum computations. *Nature*, 418:59–62, 2002. quant-ph/0109072.
- [6] R. Somma, G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme. Simulating physical phenomena by quantum networks. *Phys. Rev. A*, 65:042323/1–17, 2002. quant-ph/0108146.

